Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 2(11): pgad359, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034091

RESUMO

Carboxyl nanodiamond (cND) nanoparticles are actively internalized by B16F10 melanoma cells in culture. Treatment of B16F10 tumor cells with cNDs in vitro inhibited their ability to (i) migrate and invade through porous membranes in a transwell culture system, (ii) secrete matrix metalloproteinases (MMPs) MMP-2 and MMP-9, and (iii) express selected epithelial-mesenchymal transition markers critical for cell migration and invasion. Administration of luciferase-transfected B16F10-Luc2 melanoma cells resulted in a rapid growth of the tumor and its metastasis to different organs that could be monitored by in vivo bioluminescence imaging as well as by ex vivo BLI of the mouse organs. After tumor cells were administered intravenously in C57Bl/6 mice, administration of cNDs (50 µg i.v. every alternate day) resulted in marked suppression of the tumor growth and metastasis in different organs of mice. Subcutaneous administration of B16F10 cells resulted in robust growth of the primary tumor subcutaneously as well as its metastasis to the lungs, liver, spleen, and kidneys. Intravenous treatment with cNDs did not affect the growth of the primary tumor mass but essentially blocked the metastasis of the tumor to different organs. Histological examination of mouse organs indicated that the administration of cNDs by itself was safe and did not cause toxic changes in mouse organs. These results indicate that the cND treatment may have an antimetastatic effect on the spread of B16F10 melanoma tumor cells in mice. Further exploration of cNDs as a possible antimetastatic therapeutic agent is suggested.

2.
ACS Biomater Sci Eng ; 9(11): 6409-6424, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37870457

RESUMO

Dendritic cell-derived exosomes (Dex) have overcome the disadvantages associated with dendritic cell (DC) vaccines, such as cost effectiveness, stability, and sensitivity to the systemic microenvironment. However, in clinical trials, Dex failed to provide satisfactory results because of many reasons, including inadequate maturation of DC as well as the immunosuppressive tumor microenvironment (TME). Hence, culturing DCs in the presence of a maturation cocktail showed an induced expression of MHCs and co-stimulatory molecules. Additionally, targeting the colony stimulating factor-1 (CSF-1)/CSF-1 receptor (CSF-1R) signaling pathway by a CSF-1R inhibitor could deplete tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) which are responsible for immunosuppressive TME. Hence, in this study, mDexTA were isolated from bone marrow-derived DC cultured in the presence of a novel maturation cocktail and tumor antigen. mDexTA showed elevated expression of major histocompatibility complexes (MHCs) and co-stimulatory molecules and was found capable of activating naïve DC and T cells in vitro more efficiently when compared to imDexTA isolated from immature DCs. In addition, PLX-3397, a small molecule inhibitor of CSF-1/CSF-1R, was used in combination to enhance the antitumor efficacy of mDexTA. PLX-3397 showed dose-dependent toxicity against bone marrow-derived macrophages (BMDMs). In the B16-F10 murine melanoma model, we found that the combination treatment delayed tumor growth and improved survival compared to the mice treated with mDexTA alone by enhancing the CD8 T cells infiltration in TME. mDexTA when combined with PLX-3397 modulated the TME by shifting the Th1/Th2 toward a dominant Th1 population and depleting the TAMs and MDSCs. Interestingly, PLX-3397-induced FoxP3 expression was diminished when it was used in combination with mDexTA. Combination treatment also induced favorable systemic antitumor immunity in the spleen and lymph node. In conclusion, our findings provide insights into the synergy between mDexTA-based immunotherapy and PLX-3397 as the combination overcame the disadvantages associated with monotherapy and offer a therapeutic strategy for the treatment of solid tumors including melanoma.


Assuntos
Exossomos , Melanoma , Camundongos , Animais , Fator Estimulador de Colônias de Macrófagos/farmacologia , Microambiente Tumoral , Antígenos de Neoplasias , Células Dendríticas
3.
Br J Cancer ; 129(4): 586-600, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400677

RESUMO

BACKGROUND: Dysregulation of histone deacetylases has been linked to diverse cancers. HDAC5 is a histone deacetylase belonging to Class IIa family of histone deacetylases. Limited substrate repertoire restricts the understanding of molecular mechanisms underlying its role in tumorigenesis. METHODS: We employed a biochemical screen to identify SATB1 as HDAC5-interacting protein. Coimmunoprecipitation and deacetylation assay were performed to validate SATB1 as a HDAC5 substrate. Proliferation, migration assay and xenograft studies were performed to determine the effect of HDAC5-SATB1 interaction on tumorigenesis. RESULTS: Here we report that HDAC5 binds to and deacetylates SATB1 at the conserved lysine 411 residue. Furthermore, dynamic regulation of acetylation at this site is determined by TIP60 acetyltransferase. We also established that HDAC5-mediated deacetylation is critical for SATB1-dependent downregulation of key tumor suppressor genes. Deacetylated SATB1 also represses SDHA-induced epigenetic remodeling and anti-proliferative transcriptional program. Thus, SATB1 spurs malignant phenotype in a HDAC5-dependent manner. CONCLUSIONS: Our study highlights the pivotal role of HDAC5 in tumorigenesis. Our findings provide key insights into molecular mechanisms underlying SATB1 promoted tumor growth and metastasis.


Assuntos
Adenocarcinoma de Pulmão , Proteínas de Ligação à Região de Interação com a Matriz , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Fatores de Transcrição , Adenocarcinoma de Pulmão/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Carcinogênese
4.
Cancer Gene Ther ; 30(5): 641-646, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35136215

RESUMO

RNAs play several prominent roles in the cellular environment ranging from structural, messengers, translators, and effector molecules. RNA molecules while performing these roles are associated with several chemical modifications occurring post-transcriptionally, responsible for these supporting vital functions. The recent documentation of surface RNA modification with sialic acid residues has sparked advancement to the framework of RNA modifications. Glycan modification of surface RNA which was previously known to modify only proteins and lipids has opened new vistas to explore how these surface RNA modifications affect the cellular responses and phenotype. This paradigm shift in RNA biology with a vision of "glycans being all over the cells" has posed the field with a repertoire of questions and has given headway to the RNA world hypothesis. The review provides a comprehensive overview of glycoRNA discovery with a conceptual understanding of its previous underlying discoveries and their biological consequences with possible insights into the dynamic influence of this modification on their molecular versatility deciding cancer-immunology fate with potential implications of these glycosylation in cellular interaction, signaling, immune regulation, cancer evasion and proliferation.


Assuntos
RNA , Transcriptoma , Glicosilação , Transdução de Sinais , Comunicação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...